沒(méi)有滿足用戶的需求1未達(dá)到需求規(guī)格說(shuō)明書表明的功能2出現(xiàn)了需求規(guī)格說(shuō)明書指明不會(huì)出現(xiàn)的錯(cuò)誤3軟件功能超出了需求規(guī)格說(shuō)明書指明的范圍4軟件質(zhì)量不夠高維護(hù)性移植性效率性可靠性易用性功能性健壯性等5軟件未達(dá)到軟件需求規(guī)格說(shuō)明書未指出但是應(yīng)該達(dá)到的目標(biāo)計(jì)算器沒(méi)電了下次還得能正常使用6測(cè)試或用戶覺(jué)得不好軟件缺陷的表現(xiàn)形式1功能沒(méi)有完全實(shí)現(xiàn)2產(chǎn)品的實(shí)際結(jié)果和所期望的結(jié)果不一致3沒(méi)有達(dá)到需求規(guī)格說(shuō)明書所規(guī)定的的性能指標(biāo)等4運(yùn)行出錯(cuò)斷電運(yùn)行終端系統(tǒng)崩潰5界面排版重點(diǎn)不突出,格式不統(tǒng)一6用戶不能接受的其他問(wèn)題軟件缺陷產(chǎn)生的原因需求錯(cuò)誤需求記錄錯(cuò)誤設(shè)計(jì)說(shuō)明錯(cuò)誤代碼錯(cuò)誤兼容性錯(cuò)誤時(shí)間不充足缺陷的信息缺陷id缺陷標(biāo)題缺陷嚴(yán)重程度缺陷的優(yōu)先級(jí)缺陷的所屬模塊缺陷的詳細(xì)描述缺陷提交時(shí)間缺陷的嚴(yán)重程度劃分1blocker系統(tǒng)癱瘓異常退出計(jì)算錯(cuò)誤大部分功能不能使用死機(jī)2major功能點(diǎn)不符合用戶需求數(shù)據(jù)丟失3normal**功能特定調(diào)點(diǎn)斷斷續(xù)續(xù)4Trivial細(xì)小的錯(cuò)誤優(yōu)先級(jí)劃分緊急高中低。漏洞掃描報(bào)告顯示依賴庫(kù)存在5個(gè)已知CVE漏洞。cma檢測(cè)軟件需要多少錢
這樣做的好處是,融合模型的錯(cuò)誤來(lái)自不同的分類器,而來(lái)自不同分類器的錯(cuò)誤往往互不相關(guān)、互不影響,不會(huì)造成錯(cuò)誤的進(jìn)一步累加。常見(jiàn)的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、貝葉斯規(guī)則融合(bayes’rulebased)以及集成學(xué)習(xí)(ensemblelearning)等。其中集成學(xué)習(xí)作為后端融合方式的典型**,被廣泛應(yīng)用于通信、計(jì)算機(jī)識(shí)別、語(yǔ)音識(shí)別等研究領(lǐng)域。中間融合是指將不同的模態(tài)數(shù)據(jù)先轉(zhuǎn)化為高等特征表達(dá),再于模型的中間層進(jìn)行融合,如圖3所示。以深度神經(jīng)網(wǎng)絡(luò)為例,神經(jīng)網(wǎng)絡(luò)通過(guò)一層一層的管道映射輸入,將原始輸入轉(zhuǎn)換為更高等的表示。中間融合首先利用神經(jīng)網(wǎng)絡(luò)將原始數(shù)據(jù)轉(zhuǎn)化成高等特征表達(dá),然后獲取不同模態(tài)數(shù)據(jù)在高等特征空間上的共性,進(jìn)而學(xué)習(xí)一個(gè)聯(lián)合的多模態(tài)表征。深度多模態(tài)融合的大部分工作都采用了這種中間融合的方法,其***享表示層是通過(guò)合并來(lái)自多個(gè)模態(tài)特定路徑的連接單元來(lái)構(gòu)建的。中間融合方法的一大優(yōu)勢(shì)是可以靈活的選擇融合的位置,但設(shè)計(jì)深度多模態(tài)集成結(jié)構(gòu)時(shí),確定如何融合、何時(shí)融合以及哪些模式可以融合,是比較有挑戰(zhàn)的問(wèn)題。字節(jié)碼n-grams、dll和api信息、格式結(jié)構(gòu)信息這三種類型的特征都具有自身的優(yōu)勢(shì)。蘭州軟件檢測(cè)中心創(chuàng)新光譜分析技術(shù)賦能艾策檢測(cè),實(shí)現(xiàn)食品藥品中微量有害物質(zhì)的超痕量檢測(cè)。
12)把節(jié)裝入到vmm的地址空間,(13)可選頭部的sizeofcode域取值不正確,(14)含有可疑標(biāo)志;所述存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征包括:(1)無(wú)證書表;(2)調(diào)試數(shù)據(jù)明顯小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics屬性異常,(4)資源節(jié)的資源個(gè)數(shù)少于正常文件。進(jìn)一步的,所述生成軟件樣本的字節(jié)碼n-grams特征視圖的具體實(shí)現(xiàn)過(guò)程如下:先從當(dāng)前軟件樣本的所有短序列特征中選取詞頻tf**高的多個(gè)短序列特征;然后計(jì)算選取的每個(gè)短序列特征的逆向文件頻率idf與詞頻tf的乘積,并將其作為選取的每個(gè)短序列特征的特征值,,表示該短序列特征表示其所在軟件樣本的能力越強(qiáng);**后在選取的詞頻tf**高的多個(gè)短序列特征中選取,生成字節(jié)碼n-grams特征視圖;:=tf×idf;其中,ni,j是短序列特征i在軟件樣本j中出現(xiàn)的次數(shù),∑knk,j指軟件樣本j中所有短序列特征出現(xiàn)的次數(shù)之和,k為短序列特征總數(shù),1≤i≤k;其中,|d|指軟件樣本j的總數(shù),|{j:i∈j}|指包含短序列特征i的軟件樣本j的數(shù)目。進(jìn)一步的,所述步驟s2采用中間融合方法訓(xùn)練多模態(tài)深度集成模型。
后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過(guò)擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。從傳統(tǒng)到智能:艾策科技助力制造業(yè)升級(jí)之路。
**小化對(duì)數(shù)損失基本等價(jià)于**大化分類器的準(zhǔn)確度,對(duì)于完美的分類器,對(duì)數(shù)損失值為0。對(duì)數(shù)損失函數(shù)的計(jì)算公式如下:其中,y為輸出變量即輸出的測(cè)試樣本的檢測(cè)結(jié)果,x為輸入變量即測(cè)試樣本,l為損失函數(shù),n為測(cè)試樣本(待檢測(cè)軟件的二進(jìn)制可執(zhí)行文件)數(shù)目,yij是一個(gè)二值指標(biāo),表示與輸入的第i個(gè)測(cè)試樣本對(duì)應(yīng)的類別j,類別j指良性軟件或惡意軟件,pij為輸入的第i個(gè)測(cè)試樣本屬于類別j的概率,m為總類別數(shù),本實(shí)施例中m=2。分類器的性能也可用roc曲線(receiveroperatingcharacteristic)評(píng)價(jià),roc曲線的縱軸是檢測(cè)率(true****itiverate),橫軸是誤報(bào)率(false****itiverate),該曲線反映的是隨著檢測(cè)閾值變化下檢測(cè)率與誤報(bào)率之間的關(guān)系曲線。roc曲線下面積(areaunderroccurve,auc)的值是評(píng)價(jià)分類器比較綜合的指標(biāo),auc的值通常介于,較大的auc值一般表示分類器的性能較優(yōu)。(3)特征提取提取dll和api信息特征視圖dll(dynamiclinklibrary)文件為動(dòng)態(tài)鏈接庫(kù)文件,執(zhí)行某一個(gè)程序時(shí),相應(yīng)的dll文件就會(huì)被調(diào)用。一個(gè)應(yīng)用程序可使用多個(gè)dll文件,一個(gè)dll文件也可能被不同的應(yīng)用程序使用。api(applicationprogramminginterface)函數(shù)是windows提供給用戶作為應(yīng)用程序開(kāi)發(fā)的接口。代碼審計(jì)發(fā)現(xiàn)2處潛在內(nèi)存泄漏風(fēng)險(xiǎn),建議版本迭代修復(fù)。河北軟件評(píng)測(cè)實(shí)驗(yàn)室
數(shù)據(jù)安全與合規(guī):艾策科技的最佳實(shí)踐。cma檢測(cè)軟件需要多少錢
程序利用windows提供的接口(windowsapi)實(shí)現(xiàn)程序的功能。通過(guò)一個(gè)可執(zhí)行程序引用的動(dòng)態(tài)鏈接庫(kù)(dll)和應(yīng)用程序接口(api)可以粗略的預(yù)測(cè)該程序的功能和行為。統(tǒng)計(jì)所有樣本的導(dǎo)入節(jié)中引用的dll和api的頻率,留下引用頻率**高的60個(gè)dll和500個(gè)api。提取特征時(shí),每個(gè)樣本的導(dǎo)入節(jié)里存在選擇出的dll或api,該特征以1表示,不存在則以0表示,提取的560個(gè)dll和api特征作為***個(gè)特征視圖。提取格式信息特征視圖pe是portableexecutable的縮寫,初衷是希望能開(kāi)發(fā)一個(gè)在所有windows平臺(tái)上和所有cpu上都可執(zhí)行的通用文件格式。pe格式文件是封裝windows操作系統(tǒng)加載程序所需的信息和管理可執(zhí)行代碼的數(shù)據(jù)結(jié)構(gòu),數(shù)據(jù)**是大量的字節(jié)碼和數(shù)據(jù)結(jié)構(gòu)的有機(jī)融合。pe文件格式被**為一個(gè)線性的數(shù)據(jù)流,由pe文件頭、節(jié)表和節(jié)實(shí)體組成。惡意軟件或被惡意軟件***的可執(zhí)行文件,它本身也遵循格式要求的約束,但可能存在以下特定格式異常:(1)代碼從**后一節(jié)開(kāi)始執(zhí)行;(2)節(jié)頭部可疑的屬性;(3)pe可選頭部有效尺寸的值不正確;(4)節(jié)之間的“間縫”;(5)可疑的代碼重定向;(6)可疑的代碼節(jié)名稱;(7)可疑的頭部***;(8)來(lái)自;(9)導(dǎo)入地址表被修改;(10)多個(gè)pe頭部;(11)可疑的重定位信息;。cma檢測(cè)軟件需要多少錢