首先和大家聊一下什么是cma第三方軟件檢測資質,什么是cnas第三方軟件檢測資質,這兩個第三方軟件測評檢測的資質很多人會分不清楚。那么首先我們來看一下,cma是屬于市場監督管理局的一個行政許可,在國內是具有法律效力的認可資質。Cnas屬于中國合格評定國家委員會頒發的一個資質,效力也是受到認可的,但是cnas同時也是在全球范圍內可以通用認可,所以更多的適用于有國際許可認證需求的客戶。那么,有的客戶會存在疑問,為什么有時候軟件項目要求同時出具cma和cnas雙資質認證呢,這如果是在軟件開發項目需求中明確要求雙資質,那么就需要在出具軟件測試報告的同時蓋這兩個資質章,但是如果項目并沒有明確要求,只是要求第三方軟件檢測機構出具的軟件測試報告的話,那么其實可以用cma或者cnas其中任何一個來進行替代即可。說完了這些基本的關于軟件檢測機構的資質要求后,我們來看一下如何選擇比較靠譜或者具備正規效力的cma和cnas軟件測評機構呢?首先,需檢驗機構的許可資質,如果軟件測試機構具備兩個資質,那肯定是更好的選擇,但是如果只具備一個第三方軟件測試的資質,其實也是沒有問題的,在滿足業務需求場景的前提下,不需要去苛求兩個資質都需要具備。第二。代碼審計發現2處潛在內存泄漏風險,建議版本迭代修復。西安 軟件測試中心
什么是軟件測試通過手工和自動化工具對被測對象進行檢測,驗證實際結果和預期結果之間的差異。軟件測試的原則1測試是為了證明軟件存在缺陷2測試應該盡早介入3注意測試缺陷的群集效應80-204殺蟲劑現象5合法數據和不合法數據和邊界值,網絡異常和電源斷電等6回歸測試防止出現更多問題7妥善保存一切測試文檔軟件測試的目的1暴露軟件中的缺陷和BUG2記錄軟件運行中產生的一些數據,為開發提供改良的數據支持為什么需要軟件測試1功能實現且正確執行2軟件運行的信息數據如果一個產品開發完成之后發現了很多問題,說明此軟件開發過程很可能是有缺陷的,因此,軟件測試的目的是保證整個軟件開發過程是高質量的。測試分類1單元測試分單元2集成測試多個單元3系統測試用戶角度-功能主體4驗證測試α測試-內測β測試-公測UAT測試-客戶驗收使用系統測試分類1功能測試2性能測試3安全測試4兼容性測試測試方法1按照測試對象分類白盒測試黑盒測試灰盒測試2按照測試對象是否執行分類靜態測試動態測試3按照測試手段進行分類手工測試靈活改變測試操作和環境自動化測試1自己寫腳本2第三方工具進行測試軟件質量1維護性2移植性3效率性4可靠性5易用性6功能性軟件測試流程1需求分析2設計用例3評審用例4。醫院信息系統軟件測評費用性能基準測試GPU利用率未達理論最大值67%。
程序利用windows提供的接口(windowsapi)實現程序的功能。通過一個可執行程序引用的動態鏈接庫(dll)和應用程序接口(api)可以粗略的預測該程序的功能和行為。統計所有樣本的導入節中引用的dll和api的頻率,留下引用頻率**高的60個dll和500個api。提取特征時,每個樣本的導入節里存在選擇出的dll或api,該特征以1表示,不存在則以0表示,提取的560個dll和api特征作為***個特征視圖。提取格式信息特征視圖pe是portableexecutable的縮寫,初衷是希望能開發一個在所有windows平臺上和所有cpu上都可執行的通用文件格式。pe格式文件是封裝windows操作系統加載程序所需的信息和管理可執行代碼的數據結構,數據**是大量的字節碼和數據結構的有機融合。pe文件格式被**為一個線性的數據流,由pe文件頭、節表和節實體組成。惡意軟件或被惡意軟件***的可執行文件,它本身也遵循格式要求的約束,但可能存在以下特定格式異常:(1)代碼從**后一節開始執行;(2)節頭部可疑的屬性;(3)pe可選頭部有效尺寸的值不正確;(4)節之間的“間縫”;(5)可疑的代碼重定向;(6)可疑的代碼節名稱;(7)可疑的頭部***;(8)來自;(9)導入地址表被修改;(10)多個pe頭部;(11)可疑的重定位信息;。
k為短序列特征總數,1≤i≤k。可執行文件長短大小不一,為了防止該特征統計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數目除以包含該短序列特征之樣本實施例件的數目,再將得到的商取對數得到:其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區分能力。:如果某一特征在某樣本中以較高的頻率出現,而包含該特征的樣本數目較小,可以產生出高權重的,該特征的。因此,,保留重要的特征。此處選取可能區分惡意軟件和良性軟件的短序列特征,是因為字節碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設計三種不同方案的多模態數據融合方法。滲透測試報告暴露2個高危API接口需緊急加固。
將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入深度神經網絡,訓練多模態深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖的特征,融合成一個單一的特征向量空間,然后將其作為深度神經網絡模型的輸入,訓練多模態深度集成模型;(2)方案二:首先利用訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖分別訓練深度神經網絡模型,合并訓練的三個深度神經網絡模型的決策輸出,并將其作為感知機的輸入,訓練得到**終的多模態深度集成模型;(3)方案三:采用中間融合(intermediate-fusion)方法,首先使用三個深度神經網絡分別學習訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖的高等特征表示,并合并學習得到的訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖的高等特征表示融合成一個單一的特征向量空間,然后將其作為下一個深度神經網絡的輸入,訓練得到多模態深度神經網絡模型。步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本。從傳統到智能:艾策科技助力制造業升級之路。太原軟件評測單位
無障礙測評認定視覺障礙用戶支持功能缺失4項。西安 軟件測試中心
這種傳統方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經過簡單加殼或混淆后又不能檢測,且使用多態變形技術的惡意軟件在傳播過程中不斷隨機的改變著二進制文件內容,沒有固定的特征,使用該方法也不能檢測。新出現的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯網前,都使用主流的反**軟件測試,確保主流的反**軟件無法識別這些惡意軟件,使得當前的反**軟件通常對它們無能為力,只有在惡意軟件大規模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫,才能檢測這些惡意軟件。基于數據挖掘和機器學習的惡意軟件檢測方法將可執行文件表示成不同抽象層次的特征,使用這些特征來訓練分類模型,可實現惡意軟件的智能檢測,基于這些特征的檢測方法也取得了較高的準確率。受文本分類方法的啟發,研究人員提出了基于二進制可執行文件字節碼n-grams的惡意軟件檢測方法,這類方法提取的特征覆蓋了整個二進制可執行文件,包括pe文件頭、代碼節、數據節、導入節、資源節等信息,但字節碼n-grams特征通常沒有明顯的語義信息,大量具有語義的信息丟失,很多語義信息提取不完整。此外,基于字節碼n-grams的檢測方法提取代碼節信息考慮了機器指令的操作數。西安 軟件測試中心