服務(wù)器運(yùn)維:確保系統(tǒng)穩(wěn)定與安全的關(guān)鍵實(shí)踐
服務(wù)器運(yùn)維:確保系統(tǒng)穩(wěn)定與安全
優(yōu)化數(shù)據(jù)運(yùn)維,提升軟件效能
企業(yè)IT服務(wù):驅(qū)動(dòng)業(yè)務(wù)發(fā)展的主要引擎
關(guān)于安防監(jiān)控的前景介紹
漲知識(shí),監(jiān)控安裝這些注意事項(xiàng)你需要了解
智能化建設(shè)發(fā)展趨勢(shì)分析
廣信云保障您的業(yè)務(wù)穩(wěn)定運(yùn)行
選擇IT外包有哪些注意事項(xiàng)?
您當(dāng)前的位置:首頁>商務(wù)服務(wù)>軟著退稅軟件測試報(bào)告軟件測評(píng)軟著退稅軟件測試報(bào)告軟件測評(píng)65531產(chǎn)品價(jià)格:面議發(fā)貨地址:北京豐臺(tái)包裝說明:不限產(chǎn)品數(shù)量:個(gè)產(chǎn)品規(guī)格:不限信息編號(hào):公司編號(hào):17099560徐經(jīng)理總經(jīng)理微信進(jìn)入店鋪在線咨詢QQ咨詢相關(guān)產(chǎn)品:航標(biāo)**集團(tuán)有限公司軟件檢測報(bào)告|軟件測試報(bào)告依據(jù)科研項(xiàng)目驗(yàn)收考核指標(biāo),對(duì)項(xiàng)目產(chǎn)品應(yīng)達(dá)到的主要技術(shù)指標(biāo)進(jìn)行評(píng)測,出具測試報(bào)告。軟件檢測報(bào)告|軟件測試報(bào)告業(yè)主方驗(yàn)收評(píng)測適用于系統(tǒng)開發(fā)完成后,正式上線前的階段。用戶收益:?為系統(tǒng)建設(shè)單位(**、央企等)規(guī)避風(fēng)險(xiǎn),提高政績;?幫助為基金/課題項(xiàng)目承接方(科研院校、軟件企業(yè)等)提供驗(yàn)收依據(jù);?系統(tǒng)建設(shè)單位更直觀準(zhǔn)確地了解系統(tǒng)實(shí)際表現(xiàn);?為驗(yàn)收評(píng)審**提供參考數(shù)據(jù);?幫助系統(tǒng)建設(shè)方(軟件企業(yè))提升系統(tǒng)的含金量;適用對(duì)象:?系統(tǒng)建設(shè)方;?系統(tǒng)開發(fā)的承建方。服務(wù)流程(1)材料準(zhǔn)備《軟件產(chǎn)品登記測試委托申請(qǐng)表---模板》《用戶手冊(cè)---終稿》被測軟件產(chǎn)品著作權(quán)掃描件---確認(rèn)軟件名稱版本號(hào)。艾策紡織品檢測實(shí)驗(yàn)室配備氣候老化模擬艙,驗(yàn)證戶外用品的耐久性與色牢度。信息系統(tǒng)測評(píng)報(bào)告
先將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別輸入至一個(gè)深度神經(jīng)網(wǎng)絡(luò)中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入進(jìn)行模型訓(xùn)練,得到多模態(tài)深度集成模型。進(jìn)一步的,所述多模態(tài)深度集成模型的隱藏層的***函數(shù)采用relu,輸出層的***函數(shù)采用sigmoid,中間使用dropout層進(jìn)行正則化,優(yōu)化器采用adagrad。進(jìn)一步的,所述訓(xùn)練得到的多模態(tài)深度集成模型中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,且3個(gè)隱含層中間間隔設(shè)置有dropout層;用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,且4個(gè)隱含層中間間隔設(shè)置有dropout層;用于輸入合并抽取的高等特征表示的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,且2個(gè)隱含層中間設(shè)置有dropout層;所述dropout層的dropout率均等于。本發(fā)明實(shí)施例的有益效果是,提出了一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法,應(yīng)用了多模態(tài)深度學(xué)習(xí)方法來融合dll和api、格式結(jié)構(gòu)信息、字節(jié)碼n-grams特征。軟件cnas報(bào)告代碼簽名驗(yàn)證確認(rèn)所有組件均經(jīng)過可信機(jī)構(gòu)認(rèn)證。
比黑盒適用性廣的優(yōu)勢(shì)就凸顯出來了。[5]軟件測試方法手動(dòng)測試和自動(dòng)化測試自動(dòng)化測試,顧名思義就是軟件測試的自動(dòng)化,即在預(yù)先設(shè)定的條件下運(yùn)行被測程序,并分析運(yùn)行結(jié)果。總的來說,這種測試方法就是將以人驅(qū)動(dòng)的測試行為轉(zhuǎn)化為機(jī)器執(zhí)行的一種過程。對(duì)于手動(dòng)測試,其在設(shè)計(jì)了測試用例之后,需要測試人員根據(jù)設(shè)計(jì)的測試用例一步一步來執(zhí)行測試得到實(shí)際結(jié)果,并將其與期望結(jié)果進(jìn)行比對(duì)。[5]軟件測試方法不同階段測試編輯軟件測試方法單元測試單元測試主要是對(duì)該軟件的模塊進(jìn)行測試,通過測試以發(fā)現(xiàn)該模塊的實(shí)際功能出現(xiàn)不符合的情況和編碼錯(cuò)誤。由于該模塊的規(guī)模不大,功能單一,結(jié)構(gòu)較簡單,且測試人員可通過閱讀源程序清楚知道其邏輯結(jié)構(gòu),首先應(yīng)通過靜態(tài)測試方法,比如靜態(tài)分析、代碼審查等,對(duì)該模塊的源程序進(jìn)行分析,按照模塊的程序設(shè)計(jì)的控制流程圖,以滿足軟件覆蓋率要求的邏輯測試要求。另外,也可采用黑盒測試方法提出一組基本的測試用例,再用白盒測試方法進(jìn)行驗(yàn)證。若用黑盒測試方法所產(chǎn)生的測試用例滿足不了軟件的覆蓋要求,可采用白盒法增補(bǔ)出新的測試用例,以滿足所需的覆蓋標(biāo)準(zhǔn)。其所需的覆蓋標(biāo)準(zhǔn)應(yīng)視模塊的實(shí)際具體情況而定。
并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測試樣本進(jìn)行檢測并得出檢測結(jié)果。實(shí)驗(yàn)結(jié)果與分析(1)樣本數(shù)據(jù)集選取實(shí)驗(yàn)評(píng)估使用了不同時(shí)期的惡意軟件和良性軟件樣本,包含了7871個(gè)良性軟件樣本和8269個(gè)惡意軟件樣本,其中4103個(gè)惡意軟件樣本是2011年以前發(fā)現(xiàn)的,4166個(gè)惡意軟件樣本是近年來新發(fā)現(xiàn)的;3918個(gè)良性軟件樣本是從全新安裝的windowsxpsp3系統(tǒng)中收集的,3953個(gè)良性軟件樣本是從全新安裝的32位windows7系統(tǒng)中收集的。所有的惡意軟件樣本都是從vxheavens網(wǎng)站中收集的,所有的樣本格式都是windowspe格式的,樣本數(shù)據(jù)集構(gòu)成如表1所示。表1樣本數(shù)據(jù)集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計(jì)82697871(2)評(píng)價(jià)指標(biāo)及方法分類性能主要用兩個(gè)指標(biāo)來評(píng)估:準(zhǔn)確率和對(duì)數(shù)損失。準(zhǔn)確率測量所有預(yù)測中正確預(yù)測的樣本占總樣本的比例,*憑準(zhǔn)確率通常不足以評(píng)估預(yù)測的魯棒性,因此還需要使用對(duì)數(shù)損失。對(duì)數(shù)損失(logarithmicloss),也稱交叉熵?fù)p失(cross-entropyloss),是在概率估計(jì)上定義的,用于測量預(yù)測類別與真實(shí)類別之間的差距大小。性能基準(zhǔn)測試GPU利用率未達(dá)理論最大值67%。
先將當(dāng)前軟件樣本件的二進(jìn)制可執(zhí)行文件轉(zhuǎn)換為十六進(jìn)制字節(jié)碼序列,然后采用n-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的連續(xù)部分重疊的短序列特征,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的字節(jié)碼n-grams的特征表示。生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計(jì)所有類別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個(gè)dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個(gè)引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對(duì)當(dāng)前軟件樣本的所有dll和api信息進(jìn)行表示形成當(dāng)前軟件樣本的dll和api信息特征視圖。生成軟件樣本的格式信息特征視圖,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當(dāng)前軟件樣本的格式信息特征視圖。從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征。特定格式異常包括:(1)代碼從**后一節(jié)開始執(zhí)行,(2)節(jié)頭部可疑的屬性,。創(chuàng)新光譜分析技術(shù)賦能艾策檢測,實(shí)現(xiàn)食品藥品中微量有害物質(zhì)的超痕量檢測。軟件性能測試多少錢
數(shù)據(jù)驅(qū)動(dòng)決策:艾策科技如何提升企業(yè)競爭力。信息系統(tǒng)測評(píng)報(bào)告
本發(fā)明屬于惡意軟件防護(hù)技術(shù)領(lǐng)域::,涉及一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測方法。背景技術(shù):::惡意軟件是指在未明確提示用戶或未經(jīng)用戶許可的情況下,故意編制或設(shè)置的,對(duì)網(wǎng)絡(luò)或系統(tǒng)會(huì)產(chǎn)生威脅或潛在威脅的計(jì)算機(jī)軟件。常見的惡意軟件有計(jì)算機(jī)**(簡稱**)、特洛伊木馬(簡稱木馬)、計(jì)算機(jī)蠕蟲(簡稱蠕蟲)、后門、邏輯**等。惡意軟件可能在用戶不知情的情況下竊取計(jì)算機(jī)用戶的信息和隱私,也可能非法獲得計(jì)算機(jī)系統(tǒng)和網(wǎng)絡(luò)資源的控制,破壞計(jì)算機(jī)和網(wǎng)絡(luò)的可信性、完整性和可用性,從而為惡意軟件控制者謀取非法利益。騰訊安全發(fā)布的《2017年度互聯(lián)網(wǎng)安全報(bào)告》顯示,2017年騰訊電腦管家pc端總計(jì)攔截**近30億次,平均每月攔截木馬**近,共發(fā)現(xiàn)**或木馬***。這些數(shù)目龐大、名目繁多的惡意軟件侵蝕著我國的***、經(jīng)濟(jì)、文化、***等各個(gè)領(lǐng)域的信息安全,帶來了前所未有的挑戰(zhàn)。當(dāng)前的反**軟件主要采用基于特征碼的檢測方法,這種方法通過對(duì)代碼進(jìn)行充分研究,獲得惡意軟件特征值(即每種惡意軟件所獨(dú)有的十六進(jìn)制代碼串),如字節(jié)序列、特定的字符串等,通過匹配查找軟件中是否包含惡意軟件特征庫中的特征碼來判斷其是否為惡意軟件。信息系統(tǒng)測評(píng)報(bào)告