對一些質(zhì)量要求和可靠性要求較高的模塊,一般要滿足所需條件的組合覆蓋或者路徑覆蓋標準。[2]軟件測試方法集成測試集成測試是軟件測試的第二階段,在這個階段,通常要對已經(jīng)嚴格按照程序設(shè)計要求和標準組裝起來的模塊同時進行測試,明確該程序結(jié)構(gòu)組裝的正確性,發(fā)現(xiàn)和接口有關(guān)的問題,比如模塊接口的數(shù)據(jù)是否會在穿越接口時發(fā)生丟失;各個模塊之間因某種疏忽而產(chǎn)生不利的影響;將模塊各個子功能組合起來后產(chǎn)生的功能要求達不到預(yù)期的功能要求;一些在誤差范圍內(nèi)且可接受的誤差由于長時間的積累進而到達了不能接受的程度;數(shù)據(jù)庫因單個模塊發(fā)生錯誤造成自身出現(xiàn)錯誤等等。同時因集成測試是界于單元測試和系統(tǒng)測試之間的,所以,集成測試具有承上啟下的作用。因此有關(guān)測試人員必須做好集成測試工作。在這一階段,一般采用的是白盒和黑盒結(jié)合的方法進行測試,驗證這一階段設(shè)計的合理性以及需求功能的實現(xiàn)性。[2]軟件測試方法系統(tǒng)測試一般情況下,系統(tǒng)測試采用黑盒法來進行測試的,以此來檢查該系統(tǒng)是否符合軟件需求。本階段的主要測試內(nèi)容包括健壯性測試、性能測試、功能測試、安裝或反安裝測試、用戶界面測試、壓力測試、可靠性及安全性測試等。性能基準測試GPU利用率未達理論最大值67%。重慶軟件第三方檢測報告
的值不一定判定表法根據(jù)因果來制定判定表組成部分1條件樁:所有條件2動作樁:所有結(jié)果3條件項:針對條件樁的取值4動作項:針對動作樁的取值不犯罪,不抽*是好男人,不喝酒是好男人,只要打媳婦就是壞男人條件樁1不犯罪1102不抽*1013不喝酒011動作樁好男人11壞男人1場景法模擬用戶操作軟件時的場景,主要用于測試系統(tǒng)的業(yè)務(wù)流程先關(guān)注功能和業(yè)務(wù)是否正確實現(xiàn),然后再使用等價類和邊界值進行檢測。基本流正確的業(yè)務(wù)流程來實現(xiàn)一條操作路徑備選流模擬一條錯誤的操作流程用例場景要從開始到結(jié)束便利用例中所有的基本流和備選流。流程分析法流程-路徑針對路徑使用路徑分析的方法設(shè)計測試用例降低測試用例設(shè)計難度,只要搞清楚各種流程,就可以設(shè)計出高質(zhì)量的測試用例,而不需要太多測試經(jīng)驗1詳細了解需求2根據(jù)需求說明或界面原型,找出業(yè)務(wù)流程的哥哥頁面以及流轉(zhuǎn)關(guān)系3畫出業(yè)務(wù)流程axure4寫用例,覆蓋所有路徑分支錯誤推斷法利用經(jīng)驗猜測出出錯的可能類型,列出所有可能的錯誤和容易發(fā)生錯誤的情況。多考慮異常,反面,特殊輸入,以攻擊者的態(tài)度對臺程序。正交表對可選項多種可取值進行均等選取組合,**大概率覆蓋測試用例1根據(jù)控件和取值數(shù)選擇一個合適的正交表2列舉取值并編號。沈陽市軟件測試艾策檢測為新能源汽車電池提供安全性能深度解析。
測試人員素質(zhì)要求1、責任心2、學(xué)習能力3、懷疑精神4、溝通能力5、專注力6、洞察力7、團隊精神8、注重積累軟件測試技術(shù)測試目的編輯軟件測試的目的是為了保證軟件產(chǎn)品的**終質(zhì)量,在軟件開發(fā)的過程中,對軟件產(chǎn)品進行質(zhì)量控制。一般來說軟件測試應(yīng)由**的產(chǎn)品評測中心負責,嚴格按照軟件測試流程,制定測試計劃、測試方案、測試規(guī)范,實施測試,對測試記錄進行分析,并根據(jù)回歸測試情況撰寫測試報告。測試是為了證明程序有錯,而不能保證程序沒有錯誤。軟件測試技術(shù)常見測試編輯回歸測試功能測試壓力測試負載測試性能測試易用性測試安裝與反安裝測試**測試安全性測試兼容性測試內(nèi)存泄漏測試比較測試Alpha測試Beta測試測試信息流1、軟件配置2、測試配置3、測試工具軟件測試技術(shù)-軟件測試的分類1、從是否需要執(zhí)行被測試軟件的角度分類(靜態(tài)測試和動態(tài)測試)。2、從測試是否針對軟件結(jié)構(gòu)與算法的角度分類(白盒測試和黑盒測試)。3、從測試的不同階段分類(單元測試、集成測試、系統(tǒng)測試、驗收測試)。
并將測試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對測試樣本進行檢測并得出檢測結(jié)果。實驗結(jié)果與分析(1)樣本數(shù)據(jù)集選取實驗評估使用了不同時期的惡意軟件和良性軟件樣本,包含了7871個良性軟件樣本和8269個惡意軟件樣本,其中4103個惡意軟件樣本是2011年以前發(fā)現(xiàn)的,4166個惡意軟件樣本是近年來新發(fā)現(xiàn)的;3918個良性軟件樣本是從全新安裝的windowsxpsp3系統(tǒng)中收集的,3953個良性軟件樣本是從全新安裝的32位windows7系統(tǒng)中收集的。所有的惡意軟件樣本都是從vxheavens網(wǎng)站中收集的,所有的樣本格式都是windowspe格式的,樣本數(shù)據(jù)集構(gòu)成如表1所示。表1樣本數(shù)據(jù)集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計82697871(2)評價指標及方法分類性能主要用兩個指標來評估:準確率和對數(shù)損失。準確率測量所有預(yù)測中正確預(yù)測的樣本占總樣本的比例,*憑準確率通常不足以評估預(yù)測的魯棒性,因此還需要使用對數(shù)損失。對數(shù)損失(logarithmicloss),也稱交叉熵損失(cross-entropyloss),是在概率估計上定義的,用于測量預(yù)測類別與真實類別之間的差距大小。艾策科技:如何用數(shù)據(jù)分析重塑企業(yè)決策!
這樣做的好處是,融合模型的錯誤來自不同的分類器,而來自不同分類器的錯誤往往互不相關(guān)、互不影響,不會造成錯誤的進一步累加。常見的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、貝葉斯規(guī)則融合(bayes’rulebased)以及集成學(xué)習(ensemblelearning)等。其中集成學(xué)習作為后端融合方式的典型**,被廣泛應(yīng)用于通信、計算機識別、語音識別等研究領(lǐng)域。中間融合是指將不同的模態(tài)數(shù)據(jù)先轉(zhuǎn)化為高等特征表達,再于模型的中間層進行融合,如圖3所示。以深度神經(jīng)網(wǎng)絡(luò)為例,神經(jīng)網(wǎng)絡(luò)通過一層一層的管道映射輸入,將原始輸入轉(zhuǎn)換為更高等的表示。中間融合首先利用神經(jīng)網(wǎng)絡(luò)將原始數(shù)據(jù)轉(zhuǎn)化成高等特征表達,然后獲取不同模態(tài)數(shù)據(jù)在高等特征空間上的共性,進而學(xué)習一個聯(lián)合的多模態(tài)表征。深度多模態(tài)融合的大部分工作都采用了這種中間融合的方法,其***享表示層是通過合并來自多個模態(tài)特定路徑的連接單元來構(gòu)建的。中間融合方法的一大優(yōu)勢是可以靈活的選擇融合的位置,但設(shè)計深度多模態(tài)集成結(jié)構(gòu)時,確定如何融合、何時融合以及哪些模式可以融合,是比較有挑戰(zhàn)的問題。字節(jié)碼n-grams、dll和api信息、格式結(jié)構(gòu)信息這三種類型的特征都具有自身的優(yōu)勢。數(shù)據(jù)驅(qū)動決策:艾策科技如何提升企業(yè)競爭力。肇慶軟件產(chǎn)品檢測報告
能耗評估顯示后臺服務(wù)耗電量超出行業(yè)基準值42%。重慶軟件第三方檢測報告
k為短序列特征總數(shù),1≤i≤k。可執(zhí)行文件長短大小不一,為了防止該特征統(tǒng)計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數(shù)目除以包含該短序列特征之樣本實施例件的數(shù)目,再將得到的商取對數(shù)得到:其中,|d|指軟件樣本j的總數(shù),|{j:i∈j}|指包含短序列特征i的軟件樣本j的數(shù)目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區(qū)分能力。:如果某一特征在某樣本中以較高的頻率出現(xiàn),而包含該特征的樣本數(shù)目較小,可以產(chǎn)生出高權(quán)重的,該特征的。因此,,保留重要的特征。此處選取可能區(qū)分惡意軟件和良性軟件的短序列特征,是因為字節(jié)碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區(qū)分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設(shè)計三種不同方案的多模態(tài)數(shù)據(jù)融合方法。重慶軟件第三方檢測報告