optimizer)采用的是adagrad,batch_size是40。深度神經網絡模型訓練基本都是基于梯度下降的,尋找函數值下降速度**快的方向,沿著下降方向迭代,迅速到達局部**優解的過程就是梯度下降的過程。使用訓練集中的全部樣本訓練一次就是一個epoch,整個訓練集被使用的總次數就是epoch的值。epoch值的變化會影響深度神經網絡的權重值的更新次數。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優的epoch值。隨著迭代數的增加,前端融合模型的準確率變化曲線如圖5所示,模型的對數損失變化曲線如圖6所示。從圖5和圖6可以看出,當epoch值從0增加到5過程中,模型的驗證準確率和驗證對數損失有一定程度的波動;當epoch值從5到50的過程中,前端融合模型的訓練準確率和驗證準確率基本不變,訓練和驗證對數損失基本不變;綜合分析圖5和圖6的準確率和對數損失變化曲線,選取epoch的較優值為30。確定模型的訓練迭代數為30后,進行了10折交叉驗證實驗。前端融合模型的10折交叉驗證的準確率是%,對數損失是,混淆矩陣如圖7所示,規范化后的混淆矩陣如圖8所示。前端融合模型的roc曲線如圖9所示,該曲線反映的是隨著檢測閾值變化下檢測率與誤報率之間的關系曲線。艾策檢測團隊采用多模態傳感器融合技術,構建智能工廠設備狀態健康監測體系。北京軟件測評公司
將三種模態特征和三種融合方法的結果進行了對比,如表3所示。從表3可以看出,前端融合和中間融合較基于模態特征的檢測準確率更高,損失率更低。后端融合是三種融合方法中較弱的,雖然明顯優于基于dll和api信息、pe格式結構特征的實驗結果,但稍弱于基于字節碼3-grams特征的結果。中間融合是三種融合方法中**好的,各項性能指標都非常接近**優值。表3實驗結果對比本實施例提出了基于多模態深度學習的惡意軟件檢測方法,提取了三種模態的特征(dll和api信息、pe格式結構信息和字節碼3-grams),提出了通過三種融合方式(前端融合、后端融合、中間融合)集成三種模態的特征,有效提高惡意軟件檢測的準確率和魯棒性。實驗結果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優的中間融合方法取得了%的準確率,對數損失為,auc值為,各項性能指標已接近**優值。考慮到樣本集可能存在噪聲,本實施例提出的方法已取得了比較理想的結果。由于惡意軟件很難同時偽造多個模態的特征,本實施例提出的方法比單模態特征方法更魯棒。以上所述*為本發明的較佳實施例而已,并非用于限定本發明的保護范圍。河北第三方軟件測評公司第三方測評顯示軟件運行穩定性達99.8%,未發現重大系統崩潰隱患。
此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節和數據節信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執行文件的一些性質,字節碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件和良性軟件間的可區分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執行文件的本質,使得檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測。技術實現要素:本發明實施例的目的在于提供一種基于多模態深度學習的惡意軟件檢測方法,以解決現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測準確率不高、檢測可靠性低、泛化性和魯棒性不佳的問題,以及其難以檢測出偽造良性軟件特征的惡意軟件的問題。本發明實施例所采用的技術方案是,基于多模態深度學習的惡意軟件檢測方法,按照以下步驟進行:步驟s1、提取軟件樣本的二進制可執行文件的dll和api信息、pe格式結構信息以及字節碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖。
您當前的位置:首頁>商務服務>軟著退稅軟件測試報告軟件測評軟著退稅軟件測試報告軟件測評65531產品價格:面議發貨地址:北京豐臺包裝說明:不限產品數量:個產品規格:不限信息編號:公司編號:17099560徐經理總經理微信進入店鋪在線咨詢QQ咨詢相關產品:航標**集團有限公司軟件檢測報告|軟件測試報告依據科研項目驗收考核指標,對項目產品應達到的主要技術指標進行評測,出具測試報告。軟件檢測報告|軟件測試報告業主方驗收評測適用于系統開發完成后,正式上線前的階段。用戶收益:?為系統建設單位(**、央企等)規避風險,提高政績;?幫助為基金/課題項目承接方(科研院校、軟件企業等)提供驗收依據;?系統建設單位更直觀準確地了解系統實際表現;?為驗收評審**提供參考數據;?幫助系統建設方(軟件企業)提升系統的含金量;適用對象:?系統建設方;?系統開發的承建方。服務流程(1)材料準備《軟件產品登記測試委托申請表---模板》《用戶手冊---終稿》被測軟件產品著作權掃描件---確認軟件名稱版本號。企業數字化轉型指南:艾策科技的實用建議。
k為短序列特征總數,1≤i≤k。可執行文件長短大小不一,為了防止該特征統計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數目除以包含該短序列特征之樣本實施例件的數目,再將得到的商取對數得到:其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區分能力。:如果某一特征在某樣本中以較高的頻率出現,而包含該特征的樣本數目較小,可以產生出高權重的,該特征的。因此,,保留重要的特征。此處選取可能區分惡意軟件和良性軟件的短序列特征,是因為字節碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設計三種不同方案的多模態數據融合方法。艾策醫療檢測中心為體外診斷試劑提供全流程合規性驗證服務。軟件產品鑒定測試
數據驅動決策:艾策科技如何提升企業競爭力。北京軟件測評公司
***級初始級TMM初始級軟件測試過程的特點是測試過程無序,有時甚至是混亂的,幾乎沒有妥善定義的。初始級中軟件的測試與調試常常被混為一談,軟件開發過程中缺乏測試資源,工具以及訓練有素的測試人員。初始級的軟件測試過程沒有定義成熟度目標。第二級定義級TMM的定義級中,測試己具備基本的測試技術和方法,軟件的測試與調試己經明確地被區分開。這時,測試被定義為軟件生命周期中的一個階段,它緊隨在編碼階段之后。但在定義級中,測試計劃往往在編碼之后才得以制訂,這顯然有背于軟件工程的要求。TMM的定義級中需實現3個成熟度目標:制訂測試與調試目標,啟動測試計劃過程,制度化基本的測試技術和方法。(I)制訂測試與調試目標軟件**必須消晰地區分軟件開發的測試過程與調試過程,識別各自的目標,任務和括動。正確區分這兩個過程是提高軟件**測試能力的基礎。與調試工作不同,測試工作是一種有計劃的活動,可以進行管理和控制。這種管理和控制活動需要制訂相應的策略和政策,以確定和協調這兩個過程。制訂測試與調試目標包含5個子成熟度目標:1)分別形成測試**和調試**,并有經費支持。2)規劃并記錄測試目標。3)規劃井記錄調試目標。4)將測試和調試目標形成文檔。北京軟件測評公司