后端融合模型的10折交叉驗證的準確率是%,對數損失是,混淆矩陣如圖13所示,規范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構如圖16所示,中間融合方式用深度神經網絡從三種模態的特征分別抽取高等特征表示,然后合并學習得到的特征表示,再作為下一個深度神經網絡的輸入訓練模型,隱藏層的***函數為relu,輸出層的***函數是sigmoid,中間使用dropout層進行正則化,防止過擬合,優化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經網絡包含3個隱含層,其***個隱含層的神經元個數是128,第二個隱含層的神經元個數是64,第三個隱含層的神經元個數是32,且3個隱含層中間間隔設置有dropout層。用于抽取格式信息特征視圖的深度神經網絡包含2個隱含層,其***個隱含層的神經元個數是64,其第二個隱含層的神經元個數是32,且2個隱含層中間設置有dropout層。用于抽取字節碼n-grams特征視圖的深度神經網絡包含4個隱含層,其***個隱含層的神經元個數是512,第二個隱含層的神經元個數是384,第三個隱含層的神經元個數是256,第四個隱含層的神經元個數是125。數據驅動決策:艾策科技如何提升企業競爭力。河南軟件測試實驗室
嘗試了前端融合、后端融合和中間融合三種融合方法對進行有效融合,有效提高了惡意軟件的準確率,具備較好的泛化性能和魯棒性。實驗結果顯示,相對**且互補的特征視圖和不同深度學習融合機制的使用明顯提高了檢測方法的檢測能力和泛化性能,其中較優的中間融合方法取得了%的準確率,對數損失為,auc值為。有效解決了現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳的問題。另外,惡意軟件很難同時偽造良性軟件的多個抽象層次的特征以逃避檢測,本發明實施例同時融合軟件的二進制可執行文件的多個抽象層次的特征,可準確檢測出偽造良性軟件特征的惡意軟件,解決了現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法難以檢測出偽造良性軟件特征的惡意軟件的問題。附圖說明為了更清楚地說明本發明實施例或現有技術中的技術方案,下面將對實施例或現有技術描述中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖**是本發明的一些實施例,對于本領域普通技術人員來講,在不付出創造性勞動的前提下,還可以根據這些附圖獲得其他的附圖。圖1是前端融合方法的流程圖。成都軟件測評單位第三方驗證實際啟動速度較廠商宣稱慢0.7秒。
它已被擴展成與軟件生命周期融為一體的一組已定義的活動。測試活動遵循軟件生命周期的V字模型。測試人員在需求分析階段便開始著手制訂測試計劃,并根據用戶或客戶需求建立測試目標,同時設計測試用例并制訂測試通過準則。在集成級上,應成立軟件測試**,提供測試技術培訓,關鍵的測試活動應有相應的測試工具予以支持。在該測試成熟度等級上,沒有正式的評審程序,沒有建立質量過程和產品屬性的測試度量。集成級要實現4個成熟度目標,它們分別是:建立軟件測試**,制訂技術培訓計劃,軟件全壽命周期測試,控制和監視測試過程。(I)建立軟件測試**軟件測試的過程及質量對軟件產品質量有直接影響。由于測試往往是在時間緊,壓力大的情況下所完成的一系列復雜的活動,因此應由訓練有素的人員組成測試組。測試組要完成與測試有關的多種活動,包括負責制訂測試計劃,實施測試執行,記錄測試結果,制訂與測試有關的標準和測試度量,建立鍘試數據庫,測試重用,測試**以及測試評價等。建立軟件測試**要實現4個子目標:1)建立全**范圍內的測試組,并得到上級管理層的領導和各方面的支持,包括經費支持。2)定義測試組的作用和職責。3)由訓練有素的人員組成測試組。
針對cma和cnas第三方軟件測試機構的資質,客戶在確定合作前需要同時確認資質的有效期,因為軟件測試資質都是有一定有效期的,如果軟件測試公司在業務開展的過程中有違規或者不受認可的操作和行為,有可能會被吊銷資質執照,這一點需要特別注意。第三,軟件測試機構的資質所涵蓋的業務參數,通常來講,軟件測試報告一般針對軟件的八大參數進行測試,包括軟件功能測試、軟件性能測試、軟件信息安全測試、軟件兼容性測試、軟件可靠性測試、軟件穩定性測試、軟件可移植測試、軟件易用性測試。這幾個參數在cma或者cnas的官方網站都可以進行查詢和確認第四,軟件測試機構或者公司的本身信用背景,那么用戶可以去檢查一下公司的信用記錄,是否有不良的投訴或者法律糾紛,可以確保第三方軟件測試機構出具的軟件測試報告的效力也沒有問題。那么,總而言之,找一家靠譜的第三方軟件測試機構還是需要用戶從自己的軟件測試業務需求場景出發,認真仔細比較資質許可的正規性,然后可以完成愉快的合作和軟件測試報告的交付。企業數字化轉型指南:艾策科技的實用建議。
k為短序列特征總數,1≤i≤k。可執行文件長短大小不一,為了防止該特征統計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數目除以包含該短序列特征之樣本實施例件的數目,再將得到的商取對數得到:其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區分能力。:如果某一特征在某樣本中以較高的頻率出現,而包含該特征的樣本數目較小,可以產生出高權重的,該特征的。因此,,保留重要的特征。此處選取可能區分惡意軟件和良性軟件的短序列特征,是因為字節碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設計三種不同方案的多模態數據融合方法。能耗評估顯示后臺服務耗電量超出行業基準值42%。軟件三方評測
艾策檢測為新能源汽車電池提供安全性能深度解析。河南軟件測試實驗室
先將當前軟件樣本件的二進制可執行文件轉換為十六進制字節碼序列,然后采用n-grams方法在十六進制字節碼序列中滑動,產生大量的連續部分重疊的短序列特征,提取得到當前軟件樣本的二進制可執行文件的字節碼n-grams的特征表示。生成軟件樣本的dll和api信息特征視圖,是先統計所有類別已知的軟件樣本的pe可執行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當前的軟件樣本的導入節里是否存在選擇出的某個引用頻率**高的dll和api信息,如存在,則將當前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對當前軟件樣本的所有dll和api信息進行表示形成當前軟件樣本的dll和api信息特征視圖。生成軟件樣本的格式信息特征視圖,是從當前軟件樣本的pe格式結構信息中選取可能區分惡意軟件和良性軟件的pe格式結構特征,形成當前軟件樣本的格式信息特征視圖。從當前軟件樣本的pe格式結構信息中選取可能區分惡意軟件和良性軟件的pe格式結構特征,是從當前軟件樣本的pe格式結構信息中確定存在特定格式異常的pe格式結構特征以及存在明顯的統計差異的格式結構特征。特定格式異常包括:(1)代碼從**后一節開始執行,(2)節頭部可疑的屬性,。河南軟件測試實驗室