工研所的QPQ技術是通過在高溫(400~650℃)下對工件進行氮化和氧化處理,使金屬表面形成一層高硬度的氮化物層,通常碳鋼材料可形成10-20μm的白亮層,不銹鋼、模具鋼可形成100μm左右的擴散層。該技術在相變溫度以下處理具有微變形的特性,獨有的氧化工序可以分解氮化鹽,使其達到國家排放標準,具有環保環保的特性。工研所的QPQ表面復合處理技術應用行業非常廣,例如在汽車、摩托車、機車、紡織機械、工程機械、石油機械、化工機械、機床、儀器儀表、照相機、齒輪、模具、工具各行各業均有應用。成都工具研究所有限公司通過QPQ表面處理技術,使刀具具有更好的耐磨性。微變形QPQ生產廠家
TD金屬表面超硬改性技術俗稱滲金屬,是在800-1050℃的處理溫度下將工件置于硼砂熔鹽及其特種介質中,通過特種熔鹽中的金屬原子和工件中的碳原子產生化學反應,擴散在工件表面形成一層幾微米至二十余微米的金屬碳化物層,目前性能高、應用范圍廣的就是碳化釩(VC)覆層。VC滲層硬度高達2600-3600遠高于QPQ滲層硬度600-1500,所以工研所QPQ的韌性更好。同時工研所QPQ處理溫度(500-600℃)遠低于TD工藝(800-1050℃),且工研所QPQ處理時間短,所以工件變形量工研所QPQ技術優于TD工藝。氮化鹽浴QPQ成都工具研究所有限公司的QPQ表面處理技術可以使刀具具有更好的耐用性和可靠性。
工研所的QPQ表面復合處理技術是一種針對金屬表面的處理工藝,處理后的產品具有高硬度、高抗蝕、高耐磨、微變形、無污染等優良特性,可替代發黑、磷化、鍍鉻、氣體滲氮、離子滲氮、滲碳等常規工藝。這是一種環保的工藝,因為它不使用有毒化學品,也不產生有害廢物。該工藝還可以優化能效,減少對環境的總體影響。QPQ技術相比傳統的熱處理方法更加節能高效,并且QPQ技術在處理過程中實現了節能減排,對廢氣、廢水、廢渣進行中和處理再排放,使處理過程更加環保。
在金屬成型領域,壓鑄模、擠壓模、鍛模以及拉伸模等模具扮演著至關重要的角色。這些模具不僅要求具備很高的強度,以抵抗成型過程中的巨大壓力,還要求具有良好的抗變形能力和抗磨損能力,確保成型件的精度和質量。為了達到這些要求,模具在生產過程中必須經歷嚴格的熱處理,以增強其整體強度。然而,為了進一步延長模具的使用壽命,熱處理之后還需進行QPQ處理。工研所的QPQ處理技術通過特定的化學反應,在模具表面形成一層厚度超過10微米的化合物層。這層化合物層主要由氮化物、碳化物等硬質物質構成,極大地提高了模具表面的耐磨性,減少了因摩擦而產生的磨損。同時,化合物層以下的擴散層通過元素擴散增強了材料的微觀結構,從而提高了模具的疲勞強度。得益于QPQ處理帶來的這些明顯優勢,模具的使用壽命通??梢匝娱L2倍以上。這不僅降低了生產成本,還提高了生產效率和產品質量,為金屬成型行業帶來了明顯的效益。QPQ表面處理可以使刀具具有更高的切削精度。
H13作為應用較為廣且具有代表性的熱作模具鋼,在高溫下因擁有較高的熱硬性、沖擊韌性、耐磨性以及切削加工性,所以通常應用于熱擠壓和壓鑄模具的制造。由于H13模具鋼在服役過程中表面會受到一定程度的磨損與腐蝕,所以利用表面技術來提高H13模具鋼的性能,延長使用壽命具有重要的意義。經過工研所QPQ處理后,表面硬度增加,由基體的490HV增加到1100HV,且磨損失重量不到基體的十分之一,造成該現象的原因是經過QPQ工藝處理后,CrN和Fe2~3N等高硬度、高耐磨氮化物以及低摩擦系數Fe3O4形成于H13模具鋼表面,使其表現出良好的抗磨損性能。QPQ表面處理可以提高刀具的抗疲勞性能。凸輪軸QPQ替代氣體滲氮
成都工具研究所有限公司利用QPQ表面處理技術,使刀具具有更好的切削穩定性。微變形QPQ生產廠家
成都工具研究所在原有QPQ技術基礎上開發了深層QPQ技術,化合物層深度更大,由原有的15~20μm增加到30~40μm以上。該技術可明顯提高材料的力學性能和抗蝕性。與其他表面處理方法相比,工件具有更高的耐疲勞強度,能夠明顯提高工件的耐磨性能。工件表面硬度得到提升,提高了工件的耐用性和使用壽命,且具有更高的耐腐蝕性。QPQ處理能夠保持尺寸穩定,與其他表面處理方法相比,QPQ處理對零部件尺寸變化的影響較小,有利于保持高精度要求。微變形QPQ生產廠家